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Abstract. For a class of one-dimensional nonlinear diffusion equations, where the diffusion 
coefficient varies as some power of the dependent variable, the invariance group and its 
Lie algebra are given. The isovector fields which generate the isogroup are then used to 
derive a 'general' similarit) solution. For a particular case the solution can be reduced to 
a one-parameter group solution which is in full agreement with previously published results. 

1. Introduction 

Considerable attention has been recently paid to the study of a large variety of physical 
phenomena governed by evolution equations of a nonlinear nature. Although solutions 
to such equations can be easily obtained by numerical computation there still remains 
the need for exact analytical solutions in order to obtain a good understanding of the 
behaviour of those nonlinear systems. In this latter respect several methods have been 
advanced for finding those solutions. Among others we have the direct algebraic 
method of Hereman et a1 (1986), the inverse scattering transform approach of Gardner 
er a1 (1974), the integration procedure of Hill (1989) and Hirota's (1976) direct method. 
However, the geometric approach to invariance groups and solution of partial differen- 
tial equations of Harrison and Estabrook (1971), which emphasise the underlying 
group structure of the equations, seems to be a more natural and transparent tool of 
analysis for this class of equations. Here we shall consider the nonlinear one- 
dimensional diffusion equation 

(1) 4, - ( 4 " d X ) X  = 0 

where n is a real constant and subscripts denote differentiation with respect to time t 
and space x. This type of equation has been used by Lonngren and Hirose (1976) to 
study the expansion into a vacuum of a thermalised electron cloud described by an 
isothermal Maxwellian distribution. Also, Ahmadi et a1 ( 1976) investigated the electric 
penetration into a plasma with current saturating conductivity, whereas Tuck (1976) 
considered the diffusion of dopants in semiconductors through the substitutional- 
interstitial mechanism. More recently Anderson and Lisak (1980) modelled the ion 
temperature diffusion in Tokamak plasmas assuming that the thermal conduction was 
the dominant loss mechanism. In all the above-mentioned works either a one-parameter 
group similarity solution was obtained or approximate analytic techniques were 
required to compute them. Of course the similarity methods used (Ames 1965) yielded 
exact solutions but restricted to the invariance properties of the equation under a linear 
group of transformations. 
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In this paper we shall establish an exact 'general' similarity solution of (1) for n f 0 
by taking into account not just a single independent generator of the invariance group, 
but all of them. We shall not consider the n = 0 case because it has been dealt with 
in full extent by Bluman and Cole (1974). The structure of the paper is as follows. 
In section 2, by means of the Harrison and Estabrook (1971) approach, the generators 
of the invariance group, i.e. the isovectors, are obtained. This section also includes 
the corresponding isogroup and its Lie algebra. The previous results are then applied, 
in section 3, to derive the most general similarity solution directly from group invariance. 
Finally section 4 is devoted to showing that the result reported by Lonngren and Hirose 
(1976) is a particular case of the present solution. 

2. Isovectors, isogroup and Lie algebra 

In the geometric approach of Harrison and Estabrook (1971) for determining the 
isovectors of a partial differential equation one first recasts the PDE into an equivalent 
set of differential forms which is a closed ideal I in a q-dimensional space. For the 
present case such a closed ideal is given by 

(2) = d@ - U dt  - U dx 

d = -. d U A dx - d U A d t 

p =(u-n+"- 'u2)  dxAdt-4"duAdt  
(3) 

(4) 

Of course, d stands for the operation of exterior differentiation and A denotes the 
exterior product operator. For the sake of typographical simplicity, we shall omit the 
latter in what follows. The set (2)-(4) is the basis of a differential ideal of the Grassman 
algebra of forms on the five-dimensional manifold spanned by the variables 4, U, U, x 
and t. If we impose independence of x and t and their differentials in the above set 
we immediately learn that the set is in involution with respect to x and t .  This implies, 
according to Cartan's geometric theory of PDE (Slebodzinski 1970), that there exists 
a regular integral manifold to be considered as the solution manifold. The infinitesimal 
symmetries of the close ideal I are isovectors V =  V k  a /ak ,  where the summation 
convention is assumed and k runs over all the coordinated basis, such that Y J  c I 
with Y L  denoting the Lie derivative by the vector field V. Then it immediately follows 
that the isovectors will be given by solving the equations 

Tpa = ha (6) 
T$ = .$I + w a  + 5 d a  (7) 

where A, 6, 5 and w are arbitrary 0-, 0-, 0-, and 1-forms respectively. We do not need 
to include an expression for d a  similar to equations (6) and (7) because -ie, d a  is 
already in the ideal, i.e. 2fU d a  = (dA)a +A(da) .  

To deal with (6) we introduce the 0-form F, defined as 

F = ( V , a )  (8) 
where angle brackets denote contraction of the a form with the vector field V. Exterior 
differentiation of (8) followed by a substitution of (6) yields 

d F = A a - ( V , d a ) .  (8') 
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If  we expand F on the basis of 1-forms, namely 

d F = Fm d 4  + F,, du + F, du + F, dx + F, dt  

in (8') and substitute (2) and (3) into it, then by equating coefficients of each basis 
to zero we obtain 

V ' =  -F (9) 

V'= -F (10) 

V ' =  vF,+ F, (11) 

V" = uF, + F, (12) 

V' = F - vF, - uF,. (13) 

In order to obtain the last expression we have made use of (8). We can proceed 
similarly with (7) by writing, without loss of generality, the 1-form w as w = 
A du + B dv + C dx + D dt  with A, B, C and D arbitrary, and once more by equating 
the coefficients of all the 2-forms to zero we end up with a system of nine equations 
from which 6, 5, A, B, C and D can be eliminated to yield 

v:=o (14) 

4"(  V: - U V ~ ,  - v:) - (U - n4"-'u2)( V: + v:) = o (15) 

and 

The above set of PDE can be solved easily for the components of V by a straightforward 
integration, namely 

VI = SI + S,t (17) 

V" = Sz + S4x (18) 
1 

Vl'=-[(2-n)S,-S3]v (19) n 

1 
n 

V" =- [2S4- ( n  + 1)S,]u 

1 
Vm =; [2S4 - (21) 

where the Si ( i  = 1,2,3,4) are constants. From (17)-(21) and either (11)-(13) or (8), 
we obtain for the 0-form F, 

1 
n 

F =- (284- S3)4 - ( 8 2  + S ~ X )  U - ( 6 ,  + S 3 t ) ~ .  (22) 

Thus we have a four-parameter invariance group for (1) with n # 0. Each of the 
independent generators of the isogroup are obtained by setting all the parameters but 
one equal to zero. The complete results are presented in table 1. 
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Table 1. Invariance group of @ , = ( O ” O , ) , ( n # O ) ,  

4 V ’  V* V @  V “  V‘ 

6, 1 0 0 0 0 
0 1 0 0 0 

In this particular instance a physical description of the independent generators is 
feasible. Namely, a time translation (6, = l ) ,  a space translation (6 ,  = l ) ,  a t and 4 
scale change (6, = 1) and an x and # scale change (a4= 1). If we denote by V ,  
(M = 1,2,3,4,)  the different isovector fields, then it immediately follows from table 1 
that we have 

a 
VI =- 

a t  

a v, = - 
ax 

v,=-- # - + ( n + l ) u - + U - -  + t -  A (  a: au a au a )  a t  a 

a 
au 7 ax 

a v4=- 24-+2u-+(2-n)u- +x--. A( a i  au 

With the help of (23)-(26) the structure constants of the Lie algebra, fhN, become 
f : ,  = -f: ,  = 1, fi4 = - f :2  = 1 and zero otherwise. Therefore the algebra is not Abelian. 
We also have that V ,  and V,  are a proper invariant subalgebra. Hence the Lie algebra 
of the isogroup is neither a simple Lie algebra nor a semisimple Lie algebra. 

3. ‘General’ similarity solution 

To search for a solution of the similarity type we take advantage of the fact that the 
Lie algebra of the isogroup has a proper invariant subalgebra and we can then augment 
the ideal of forms and impose that the augmented forms be annulled in the solution 
manifold as well as the original ideal of forms (Harrison and Estabrook 1971). One 
way to augment the ideal is by contracting a, d a  or p with V. Let us choose the 
contraction ( V ,  a )  which has already been introduced in section 2 (see (8)).  As a result 
of the involution of a, d a  and p with respect to x and t these forms are annulled on 
the solution manifold, then in order to satisfy that the augmented ideal be also annulled 
on the solution manifold, we require that (22) be equal to zero, i.e. 
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This last equation is a quasilinear PDE which can be easily integrated by the method 
of characteristics (Courant and Hilbert 1962), i.e. 

e2 + e,x 
( 6 ) + e 3 t ) 8 4 ’ H 3  

r =  

4(x, t ) =  G(r)(61+e3t)’”’H3 

with G(r) satisfying the equation 

Equation (30) results from a substitution of (29) into (1) and then a change of variables 
from x and t to T by means of (28). 

Therefore (29) is a four-parameter group similarity solution of (1) for n # 0 as long 
as G(r) satisfies (30). Here r plays the role of similarity variable. We refer to (29) 
as a ‘general’ similarity solution in the sense that is the most general similarity solution 
obtained directly from group invariance. 

4. The N = -1 case 

In this section we shall show how to recover the Lonngren and Hirose (1976) solution 
for (1) with n = -1 as a particular case of the present one. For the sake of simplicity 
we shall set S3 = S4 # 0, which is in agreement with the condition 28, - S3 # 0, then 
(28)-(30) reduce to 

4(x, t )  = G( T ) (  6 )  + t ) - ’  

G,, - G-‘G:+ r ~ ~ , +  G‘ = 0. 
(32) 

(33) 
Now we look for a solution of (33) by using a generating function of Lorentz type 
(Wilhelmsson 1984, Anderson et a1 1984), i.e. 

a 
G(r)=- 

p + r 2  (34) 

with a and p parameters to be determined from (33). By substitution of (34) into (33) 
and equating to zero the coefficients of succesive powers of T, we obtain a = 2 and p 
any real constant. Then it immediately follows that 

As the Lonngren and Hirose (1976) method of solution presupposes only a one- 
parameter group of transformations and we have already assumed that S3 = & # 0, 
then the reduction of (35) to a one-parameter group solution is possible if we set 
SI = S2 = 0 (i.e. 8,  = = 0). Taking into account the above considerations, (35) becomes 

which is the same solution previously reported by the authors referred to earlier. 
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A final remark regarding Hill’s results (Hill 1980) and the present formalism is in 
order. The choice of similarity variables is mainly dictated by whether the resulting 
equation is amenable to an easy solution or not. Hill’s paper has made a different 
choice of similarity variables as compared with the ones used in this paper but equally 
valid. In fact Hill’s equations (1.4) and (3.1) can be derived from our ( 2 7 )  by a simple 
change of variables and a reduction to a one-parameter group description. In order 
to conform ( 2 7 )  to Hill’s notation, we rewrite it as 

C =  m ( e , + e , ~ ) ~ , + m ( e , + e ~ t ) ~ , .  (36) 

To reduce the above expression to a one-parameter group we set 8 ,  = 0, 0, = 0 and 
define O3 = ( l /A)  and O4 = (1 + A ) / 2 A ,  then the Lagrange subsidiary equations of (36) 
become 

2A 

A straightforward integration of the first and second equalities of the above expression 
yield Hill’s similarity variables (1.4) and then his (3.1) follows immediately. 
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